Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-Ethoxy-4'-methoxyisoflavone (monoethylformononetin)

Qiu-Ya Wang

Department of Chemistry and Chemical Engineering, Weinan Teachers University, weinan 714000, People's Republic of China Correspondence e-mail: wqiuya1978@163.com

Received 8 March 2008; accepted 17 April 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.123; data-to-parameter ratio = 12.7.

The title compound, $C_{18}H_{16}O_4$, is composed of a benzopyranone core with a 4-methoxyphenyl subsituent in the 3-position and an additional ethoxy group in the 7-position. The benzopyranone ring is not coplanar with the benzene ring, the dihedral angle between them being 41.76 (7)°. The methoxy and ethoxy substituents are nearly coplanar with the ring systems to which they are attached. Individual molecules are linked by two kinds of intermolecular hydrogen bonds into chains containing classical $R_2^2(8)$ rings. The chains are further assembled by aromatic F-tape and T-tape stacking interactions and additional intermolecular hydrogen bonding to give a two-dimensional network.

Related literature

For related literature, see: Cassidy *et al.* (1994); Janiak (2000); Jha *et al.* (1985); Potter (1995); Sirtori *et al.* (1995); Zhang *et al.* (2005).

Experimental

Crystal data C₁₈H₁₆O₄

 $M_r = 296.31$

Data collection

Bruker SMART CCD area-detector	3678 measured reflections
diffractometer	2572 independent reflections
Absorption correction: multi-scan	1732 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1999)	$R_{\rm int} = 0.019$
$T_{\min} = 0.968, \ T_{\max} = 0.975$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	202 parameters
$wR(F^2) = 0.123$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
2572 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9\cdots O2^{i}$	0.93	2.52	3.105 (2)	121
$C16-H16\cdots O3$ $C17-H17B\cdots O2^{iii}$	0.93	2.60 2.58	3.315 (2) 3.358 (3)	134 138

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) -x, -y + 2, -z.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT-Plus* (Bruker, 1999); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author is grateful for financial support from the Science and Technology Postgraduate Project of Weinan Teachers University, China (No. 08YKZ006)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2059).

References

- Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cassidy, A., Bingham, S. & Setchell, K. D. (1994). Am. J. Clin. Nutr. 60, 333–340.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Jha, H. C., von Recklinghausen, G. & Zilliken, F. (1985). *Biochem. Pharmacol.* **34**, 1367–1372.
- Potter, S. M. (1995). J. Nutr. 125, 606S-611S.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sirtori, C. R., Lovati, M. R. & Manzoni, C. (1995). J. Nutr. 125, 598S-605S.
- Zhang, Z. T., Wang, Q.-Y., He, Y. & Yu, K.-B. (2005). J. Chem. Crystallogr. 35, 89–94.

organic compounds

V = 736.5 (6) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.31 \times 0.27$ mm

 $\mu = 0.09 \text{ mm}^-$ T = 296 (2) K

7 - 2

Acta Cryst. (2008). E64, o893 [doi:10.1107/S1600536808010672]

7-Ethoxy-4'-methoxyisoflavone (monoethylformononetin)

Q.-Y. Wang

Comment

The isoflavone derivative formononetin (4'-methoxy-7-hydroxyisoflavone) displays a wide range of biological activities, such as antioxidant effect (Jha *et al.*, 1985), inhibiting cardiovascular disease (Potter *et al.*, 1995; Sirtori *et al.*, 1995) and balancing women's hormones (Cassidy *et al.*, 1994). The title compound 4'-methoxy-7-ethoxylisoflavone, (I), is a derivative of formononetin and has potential medical applications.

The title compound is composed of a benzopyranone core with a *p*-methoxyphenyl substituent in 3-position and an additional ethoxy group in 7-position (Fig. 1). The geometry of the isoflavone skeleton of (I) is similar to that of monoethyl-daidzein (Zhang *et al.*, 2005) with respect to most of the bond distances and angles. The atoms of the benzopyranone moiety, including ring A (C10,C11,C13–C16) and C (O3/C8–C12), display an almost coplanar configuration with a mean deviation to the least square plane of 0.0152 (17) Å. To minimize steric pressure, the two rigid ring systems, benzene ring B (C2–C7) and the benzopyranone moiety, are rotated by 41.76 (7)° with respect to each other. The methoxy group at atom C2 is nearly coplanar with the benzopyranone moiety, as indicated by the torsional angle C1–O1–C2–C3 = 4.6 (3)°; The ethoxy group at atom C14 is also nearly coplanar with the attached ring, the torsional angle C17–O4–C14–C13 being -7.9 (2)°.

A one-dimensional infinite chain is formed by two intermolecular hydrogen bonds of the C–H···O type (C9–H9···O2 and C16–H16···O3, Fig. 2, Table 1). This combination of hydrogen bonds generates $R_2^2(8)$ rings propagating as an infinite one-dimensional chain along *a* axis.

As shown in Fig. 3, two isoflavone skeletons arrange in an anti-parallel fashion with aromatic F-tape and T-tape stacking interactions linking two molecules into a dimeric structure. The two benzopyranone moieties stack with each other with a CgAC-CgAC* distance of 3.686 (2) Å (CgAC and CgAC* are the centres of benzopyranone moieties at (x, y, z) and (-x, 2 - y, -z), respectively). The interplanar spacing measures to 3.425 (2) Å. In addition, another T-tape stacking interaction between H18C and CgB* (the centroid of ring B at (-x, 2 - y, -z)) of 2.818 (3) Å is observed. Both distances obviously lie in the normal range of F-tape and T-tape π - π stacking interactions (Janiak, 2000). At the same time, the carbonyl oxygen atom O2 acts as a hydrogen bond acceptor towards H17B of a neighboring molecule also leading to the formation of a dimeric substructure. The intermolecular hydrogen bond C17—H17B···O2 together with the aromatic F-tape and T-tape stacking interactions assemble the chains mentioned above into a two-dimensional network structure.

Experimental

Formononetin (1.0 g) was dissolved into acetone (30 ml) and KOH (1 ml, 0.3%). Diethylsulfate (1 ml) was added dropwise to the solution under vigorous stirring. The mixture was stirred at room temperature for 3 h and then poured into water (50 ml). A white precipitation appeared, which was filtered after 4 h and terated with NaOH (50 ml, 2 mol/*L*) to remove traces of remaining formonetin. The precipitate was filtered and washed with water until the pH of the filtrate was 7 yielding the title compound, 4'-methoxy-7-ethoxylisoflavone (yield: 82.4%). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the solvent from an ethanolic solution after 3 d at room temperature.

Refinement

H atoms bound to O atoms were found in difference maps and refined using a riding model. H atoms bound to C atoms were placed in calculated positions (C—H=0.93–0.97 Å) and refined using a riding model, allowing for free rotation of the rigid methyl groups. $U_{iso}(H)$ values were constrained to be 1.2Ueq (attached atom) [1.5Ueq(C) for methyl H atoms].

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids.

Fig. 2. The one-dimensional chain formed *via* two intermolecular hydrogen bonds of the C–H···O type. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (-x + 1, y, z) and (x + 1, y, z), respectively.

Fig. 3. The dimeric structure formed *via* aromatic F-tape and T-tape stacking interactions as well as another intermolecular hydrogen bond of the C–H···O type. Atoms marked with an asterisk (*) are at the symmetry positions (-x, 2 - y, -z). For the sake of clarity, some H atoms of isoflavone skeletons have been omitted.

7-Ethoxy-4'-methoxyisoflavone

Crystal data

$C_{18}H_{16}O_4$	V = 736.5 (6) Å ³
$M_r = 296.31$	Z = 2
Triclinic, <i>P</i> T	$F_{000} = 312$
Hall symbol: -P 1	$D_{\rm x} = 1.336 {\rm ~Mg} {\rm ~m}^{-3}$
a = 6.234 (3) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 10.257 (5) Å	Cell parameters from 2633 reflections
c = 12.159 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 80.837 (7)^{\circ}$	T = 296 (2) K
$\beta = 87.728 \ (8)^{\circ}$	Hexagonal, colorless
$\gamma = 73.653 \ (7)^{\circ}$	$0.35 \times 0.31 \times 0.27 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	2572 independent reflections
Radiation source: fine-focus sealed tube	1732 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
T = 296(2) K	$\theta_{max} = 25.1^{\circ}$

φ and ω scans	$h = -6 \rightarrow 7$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$k = -12 \rightarrow 11$
$T_{\min} = 0.968, T_{\max} = 0.975$	$l = -13 \rightarrow 14$
3678 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.040$	$w = 1/[\sigma^2(F_o^2) + (0.0722P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.123$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
2572 reflections	$\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$
202 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.021 (5)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2) x y z U_{iso}^*/U_{eq}

	\mathcal{A}	y	4	U _{1so} / U _{eq}
O1	0.4540 (2)	0.17252 (13)	0.40797 (10)	0.0661 (4)
O2	-0.17446 (17)	0.70638 (13)	0.09853 (9)	0.0568 (4)
O3	0.36722 (16)	0.77566 (12)	-0.07427 (9)	0.0501 (3)
O4	-0.0813 (2)	1.17079 (13)	-0.30131 (10)	0.0628 (4)
C1	0.6401 (4)	0.1505 (2)	0.48100 (17)	0.0836 (7)
H1A	0.7738	0.1451	0.4379	0.125*
H1B	0.6568	0.0660	0.5314	0.125*
H1C	0.6143	0.2254	0.5227	0.125*
C2	0.4019 (3)	0.29134 (18)	0.33118 (13)	0.0518 (5)
C3	0.5249 (3)	0.3858 (2)	0.31458 (14)	0.0574 (5)
Н3	0.6505	0.3730	0.3583	0.069*

C4	0.4600 (3)	0.49962 (18)	0.23260 (13)	0.0518 (5)
H4	0.5444	0.5622	0.2219	0.062*
C5	0.2730 (3)	0.52354 (17)	0.16568 (13)	0.0432 (4)
C6	0.1484 (3)	0.42862 (17)	0.18588 (13)	0.0459 (4)
Н6	0.0202	0.4425	0.1439	0.055*
C7	0.2120 (3)	0.31489 (18)	0.26689 (13)	0.0495 (4)
H7	0.1264	0.2529	0.2787	0.059*
C8	0.2177 (2)	0.64102 (16)	0.07294 (12)	0.0403 (4)
C9	0.3870 (3)	0.67076 (17)	0.01147 (13)	0.0459 (4)
Н9	0.5303	0.6143	0.0294	0.055*
C10	0.1585 (2)	0.85994 (16)	-0.10328 (12)	0.0413 (4)
C11	-0.0298 (2)	0.83924 (16)	-0.04665 (12)	0.0394 (4)
C12	-0.0106 (2)	0.72643 (17)	0.04624 (12)	0.0417 (4)
C13	0.1508 (3)	0.96676 (18)	-0.19021 (13)	0.0480 (4)
H13	0.2807	0.9761	-0.2269	0.058*
C14	-0.0519 (3)	1.05814 (17)	-0.22079 (13)	0.0476 (4)
C15	-0.2471 (3)	1.04083 (18)	-0.16642 (14)	0.0521 (5)
H15	-0.3851	1.1025	-0.1875	0.063*
C16	-0.2340 (3)	0.93317 (18)	-0.08245 (14)	0.0488 (4)
H16	-0.3648	0.9219	-0.0480	0.059*
C17	0.1156 (3)	1.2050 (2)	-0.34750 (15)	0.0656 (5)
H17A	0.1971	1.1364	-0.3918	0.079*
H17B	0.2131	1.2079	-0.2882	0.079*
C18	0.0418 (4)	1.3431 (2)	-0.41900 (17)	0.0805 (6)
H18A	-0.0447	1.3373	-0.4807	0.121*
H18B	0.1706	1.3717	-0.4463	0.121*
H18C	-0.0479	1.4088	-0.3757	0.121*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0788 (9)	0.0575 (9)	0.0569 (8)	-0.0217 (7)	-0.0114 (6)	0.0143 (7)
O2	0.0417 (6)	0.0653 (9)	0.0612 (7)	-0.0198 (6)	0.0080 (5)	0.0033 (6)
O3	0.0385 (6)	0.0487 (8)	0.0558 (7)	-0.0100 (5)	0.0055 (5)	0.0082 (6)
O4	0.0693 (8)	0.0575 (9)	0.0555 (8)	-0.0191 (7)	-0.0097 (6)	0.0146 (7)
C1	0.0906 (16)	0.0762 (16)	0.0733 (14)	-0.0212 (12)	-0.0252 (11)	0.0223 (12)
C2	0.0603 (11)	0.0489 (11)	0.0432 (10)	-0.0163 (9)	0.0018 (8)	0.0030 (8)
C3	0.0548 (11)	0.0615 (13)	0.0542 (11)	-0.0196 (9)	-0.0114 (8)	0.0049 (9)
C4	0.0522 (10)	0.0521 (11)	0.0537 (10)	-0.0233 (9)	-0.0052 (8)	0.0020 (9)
C5	0.0418 (9)	0.0451 (10)	0.0433 (9)	-0.0149 (7)	0.0017 (7)	-0.0036 (8)
C6	0.0458 (9)	0.0490 (11)	0.0444 (9)	-0.0171 (8)	0.0007 (7)	-0.0045 (8)
C7	0.0540 (10)	0.0490 (11)	0.0486 (10)	-0.0224 (8)	0.0041 (7)	-0.0034 (8)
C8	0.0405 (8)	0.0411 (10)	0.0409 (8)	-0.0158 (7)	-0.0009 (6)	-0.0034 (7)
C9	0.0392 (9)	0.0413 (10)	0.0524 (10)	-0.0088 (7)	-0.0007 (7)	0.0029 (8)
C10	0.0398 (8)	0.0418 (10)	0.0410 (9)	-0.0107 (7)	-0.0005 (6)	-0.0036 (8)
C11	0.0387 (8)	0.0400 (10)	0.0397 (8)	-0.0126 (7)	-0.0012 (6)	-0.0037 (7)
C12	0.0401 (9)	0.0460 (10)	0.0426 (9)	-0.0174 (7)	0.0009 (7)	-0.0079 (8)
C13	0.0492 (10)	0.0486 (11)	0.0455 (10)	-0.0167 (8)	0.0046 (7)	-0.0007 (8)

C14	0.0568 (10)	0.0455 (11)	0.0397 (9)	-0.0159 (8)	-0.0069 (7)	0.0001 (8)
C15	0.0439 (10)	0.0488 (11)	0.0606 (11)	-0.0107 (8)	-0.0107 (8)	-0.0007 (9)
C16	0.0387 (9)	0.0521 (11)	0.0556 (10)	-0.0153 (8)	-0.0010 (7)	-0.0039 (9)
C17	0.0787 (13)	0.0561 (13)	0.0550 (11)	-0.0167 (10)	0.0116 (9)	0.0053 (10)
C18	0.1102 (17)	0.0565 (14)	0.0655 (13)	-0.0205 (12)	0.0130 (12)	0.0099 (11)
Geometric paran	neters (Å, °)					
O1—C2		1.379 (2)	С7—Н	7	0	.9300
O1—C1		1.433 (2)	C8—C	9	1	.346 (2)
O2—C12		1.2307 (18)	C8—C	12	1.	.464 (2)
О3—С9		1.3557 (19)	С9—Н	9	0	.9300
O3—C10		1.3675 (18)	C10—0	213	1.	.388 (2)
O4—C14		1.365 (2)	C10—0	211	1.	.388 (2)
O4—C17		1.439 (2)	C11—0	216	1.	.399 (2)
C1—H1A		0.9600	C11—0	212	1.	.465 (2)
C1—H1B		0.9600	C13—0	214	1.	.369 (2)
C1—H1C		0.9600	C13—I	H13	0.	.9300
C2—C3		1.383 (3)	C14—0	215	1.	.404 (2)
C2—C7		1.387 (2)	C15—0	216	1.	.366 (2)
C3—C4		1.384 (2)	C15—I	H15	0	.9300
С3—Н3		0.9300	C16—I	H16	0	.9300
C4—C5		1.390 (2)	C17—0	C18	1.	.499 (3)
C4—H4		0.9300	C17—I	H17A	0	.9700
C5—C6		1.395 (2)	C17—I	H17B	0	.9700
C5—C8		1.485 (2)	C18—I	H18A	0	.9600
C6—C7		1.376 (2)	C18—I	H18B	0.	.9600
С6—Н6		0.9300	C18—I	H18C	0.	.9600
C2—O1—C1		117.47 (14)	O3—C	10—C13	1	15.53 (13)
C9—O3—C10		118.54 (12)	O3—C	10—C11	1.	21.09 (14)
C14—O4—C17		117.60 (14)	C13—0	C10—C11	1.	23.36 (15)
01—C1—H1A		109.5	C10—0	C11—C16	1	16.07 (15)
O1—C1—H1B		109.5	C10—0	C11—C12	12	20.89 (14)
H1A—C1—H1B		109.5	C16—0	C11—C12	12	23.03 (13)
01—C1—H1C		109.5	O2—C	12—C8	12	22.74 (15)
H1A—C1—H1C		109.5	O2—C	12—C11	12	22.28 (15)
H1B—C1—H1C		109.5	C8—C	12—C11	1	14.98 (12)
O1—C2—C3		124.71 (16)	C14—0	C13—C10	1	18.61 (15)
O1—C2—C7		116.29 (15)	C14—0	С13—Н13	12	20.7
C3—C2—C7		118.99 (17)	C10—0	С13—Н13	12	20.7
C2—C3—C4		119.61 (16)	O4—C	14—C13	12	24.46 (15)
С2—С3—Н3		120.2	O4—C	14—C15	1	15.48 (16)
С4—С3—Н3		120.2	C13—0	C14—C15	12	20.05 (16)
C3—C4—C5		122.27 (15)	C16—0	C15—C14	1	19.81 (16)
C3—C4—H4		118.9	C16—0	С15—Н15	12	20.1
С5—С4—Н4		118.9	C14—0	С15—Н15	12	20.1
C4—C5—C6		117.05 (15)	C15—0	C16—C11	12	22.07 (14)
C4—C5—C8		120.86 (13)	C15—0	С16—Н16	1	19.0
C6—C5—C8		122.00 (14)	C11—0	С16—Н16	1	19.0

C7—C6—C5	121.12 (15)	O4—C17—C18	107.74 (16)
С7—С6—Н6	119.4	O4—C17—H17A	110.2
С5—С6—Н6	119.4	C18—C17—H17A	110.2
C6—C7—C2	120.92 (15)	O4—C17—H17B	110.2
С6—С7—Н7	119.5	C18—C17—H17B	110.2
С2—С7—Н7	119.5	H17A—C17—H17B	108.5
C9—C8—C12	118.69 (15)	C17—C18—H18A	109.5
C9—C8—C5	118.03 (14)	C17—C18—H18B	109.5
C12—C8—C5	123.28 (12)	H18A—C18—H18B	109.5
C8—C9—O3	125.81 (15)	C17—C18—H18C	109.5
С8—С9—Н9	117.1	H18A—C18—H18C	109.5
О3—С9—Н9	117.1	H18B—C18—H18C	109.5
C1—O1—C2—C3	4.6 (3)	O3-C10-C11-C12	0.1 (2)
C1—O1—C2—C7	-175.63 (15)	C13-C10-C11-C12	-178.56 (13)
O1—C2—C3—C4	178.07 (15)	C9—C8—C12—O2	-179.79 (15)
C7—C2—C3—C4	-1.7 (3)	C5—C8—C12—O2	-0.5 (2)
C2—C3—C4—C5	0.3 (3)	C9—C8—C12—C11	-0.6 (2)
C3—C4—C5—C6	1.2 (2)	C5-C8-C12-C11	178.64 (13)
C3—C4—C5—C8	-175.40 (14)	C10-C11-C12-O2	179.37 (14)
C4—C5—C6—C7	-1.5 (2)	C16—C11—C12—O2	0.6 (2)
C8—C5—C6—C7	175.13 (14)	C10-C11-C12-C8	0.2 (2)
C5—C6—C7—C2	0.1 (2)	C16—C11—C12—C8	-178.60 (14)
O1—C2—C7—C6	-178.32 (13)	O3-C10-C13-C14	-177.57 (13)
C3—C2—C7—C6	1.5 (3)	C11-C10-C13-C14	1.2 (2)
C4—C5—C8—C9	39.5 (2)	C17—O4—C14—C13	-7.9 (2)
C6—C5—C8—C9	-136.98 (16)	C17—O4—C14—C15	170.69 (14)
C4—C5—C8—C12	-139.76 (16)	C10-C13-C14-O4	176.99 (14)
C6-C5-C8-C12	43.8 (2)	C10-C13-C14-C15	-1.6 (2)
C12—C8—C9—O3	0.8 (2)	O4-C14-C15-C16	-178.21 (13)
C5—C8—C9—O3	-178.50 (13)	C13-C14-C15-C16	0.5 (2)
C10—O3—C9—C8	-0.5 (2)	C14—C15—C16—C11	1.1 (2)
C9—O3—C10—C13	178.77 (13)	C10-C11-C16-C15	-1.5 (2)
C9—O3—C10—C11	0.0 (2)	C12-C11-C16-C15	177.38 (14)
O3-C10-C11-C16	179.00 (13)	C14—O4—C17—C18	-170.80 (14)
C13—C10—C11—C16	0.3 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$	
C9—H9···O2 ⁱ	0.93	2.52	3.105 (2)	121	
C16—H16···O3 ⁱⁱ	0.93	2.60	3.315 (2)	134	
C17—H17B···O2 ⁱⁱⁱ	0.97	2.58	3.358 (3)	138	
Symmetry codes: (i) $x+1$, y , z ; (ii) $x-1$, y , z ; (iii) $-x$, $-y+2$, $-z$.					

Fig. 1

Fig. 3